Bug Severity Prediction Algorithm Using Topic-Based Feature Selection and CNN-LSTM Algorithm

نویسندگان

چکیده

Increasing software usage has gradually increased the occurrence of bugs. When writing a bug report, severity can be freely selected, so subjective judgment author is involved. In judgment, error may occur depending on background knowledge between user and developer. To resolve this problem, in paper, was predicted using feature selection algorithm each topic. We utilize dataset Eclipse Mozilla open source projects. First, we classify reports by topic-based severity, extract features from The learning characteristics CNN-LSTM algorithm, F-measure 90.62% 93.22% Mozilla. evaluate effectiveness proposed model, compared baselines including DeepSeverity EWD-Multinomial studies with projects showed that model more efficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

IFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF

Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...

متن کامل

fast sffs-based algorithm for feature selection in biomedical datasets

biomedical datasets usually include a large number of features relative to the number of samples. however, some data dimensions may be less relevant or even irrelevant to the output class. selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. to this end, this paper presents a hybrid method of filter and wr...

متن کامل

Feature Subset Selection Using a Genetic Algorithm Feature Subset Selection Using a Genetic Algorithm

Practical pattern classiication and knowledge discovery problems require selection of a subset of attributes or features (from a much larger set) to represent the patterns to be classiied. This paper presents an approach to the multi-criteria optimization problem of feature subset selection using a genetic algorithm. Our experiments demonstrate the feasibility of this approach for feature subse...

متن کامل

improving short-term wind power prediction with neural network and ica algorithm and input feature selection

according to this fact that wind is now a part of global energy portfolio and due to unreliable and discontinuous production of wind energy; prediction of wind power value is proposed as a main necessity. in recent years, various methods have been proposed for wind power prediction. in this paper the prediction structure involves feature selection and use of artificial neural network (ann). in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3204689